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Dynamics of spring-block models: Tuning to criticality
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We have studied the homogeneous Burridge-Knopoff spring-block model with nonlinear friction in-
troduced by Carlson and Langer [Phys. Rev. Lett. 62, 2632 (1989); Phys. Rev. A 40, 6470 (1989)]. There
are several different velocity scales that define the model and divide the behavior of the system into dis-
tinct regimes. Over much of the parameter space defined by these velocities the system appears to be
self-organized to what is reminiscent of a first-order transition. As the friction nonlinearity is varied,
there appears to be a continuous (critical) transition to a regime where a global event is continually

occurring.

PACS number(s): 05.45.+b, 91.30.Dk, 46.10.+z, 05.70.Ln

A variety of dynamical systems demonstrate scaling
properties with power-law correlations. One example of
such behavior is brittle fracture, which, in the context of
earthquakes, has the Gutenberg-Richter law [1] describ-
ing the distribution of seismic moments p(M,) as a power
law in the moment M,. Because such scaling extends
over many decades in M, earthquakes have been regard-
ed as prototypical “self-organized critical” systems [2].
According to the tenets of self-organized criticality, there
can be an analogy between the dynamics of a driven, spa-
tially extended, steady-state system and the static correla-
tions occurring at critical points.

The scaling properties of earthquake distribution func-
tions have motivated the construction of many models
that can produce such behavior [3]. Independent of their
relevance to earthquakes, these models often have in-
teresting dynamical behavior. One model that has re-
ceived considerable attention is the spring-block model of
Burridge and Knopoff [4] shown in the inset of Fig. 1(a).
In a homogeneous version of this model, a one-
dimensional array of N blocks, each of mass m, are cou-
pled by springs of spring constant k, to one another, and
by springs of constant k, to a rigid pulling rod that
moves at constant velocity V. In equilibrium, when all
the springs are unstretched, adjacent blocks are separated
by a distance a. The blocks rest upon a stationary sur-
face, which provides a frictional force that impedes the
motion of the blocks. In the particular version con-
sidered by Carlson and Langer [5] the friction is a de-
creasing function of velocity, the same for all blocks; the
equation of motion for the jth mass is

mX; =k, (X, ,—2X;+X,_))+k,(Vt —X])
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where X; is the displacement of the jth block from its

equilibrium position. The last term in Eq. (1) represents

the frictional force where ¥, is a characteristic velocity

for the friction. In this homogeneous model, where no

inherent disorder was present except for the randomness

in the initial displacements of the blocks, the dynamics
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nonetheless displayed scaling properties [S]. By defining
the seismic moment as the sum over all displacements
during an event, My=a3 jSX T those authors showed
that the model had a regime where the distribution of
event moments scaled as p(My)xMy %!, with b=1,
consistent with the Gutenberg-Richter law observed in
much seismic data [6,7].

Clearly, this model must have a variety of regimes
since there are five independent velocity scales that can be
defined. Two appear explicitly in Eq. (1): (i) the pulling
velocity V and (ii) the characteristic friction velocity V.
Two more can be defined in terms of the spring constants,
the mass, and Fy: (i) V,=F,/V'mk, and (iv)
V,=(Fy/k, )V k./m . Here ¥V and ¥, correspond to the
maximum velocities of a single block held by a spring of
constant kp or k., respectively, when it has been dis-
placed by the characteristic distance F,/k, in the ab-
sence of friction. The fifth velocity, the sound velocity
V,=aV k./m, depends on the equilibrium spacing of
the blocks a, which does not appear explicitly in Eq. (1).
Thus only the first four velocities determine the nature of
the solutions to that equation, and, in general, we would
expect different behavior depending on their relative
magnitudes.

In this paper we investigate the behavior of a slowly
driven system such that V <<V, <<V,. We describe our
simulations in two different regimes depending on the rel-
ative magnitude of ¥, and V,,. We find in the case with
Vy<V,, first studied extensively in Ref. [5], that the
dominant motion of the fault is through rapidly moving,
finite-size, ruptures. By tuning the ratio V,/V, through
1, we find that a transition takes place to a new regime
where a system-spanning, slowly moving event is continu-
ously occurring. This transition appears to be continuous
(i.e., critical) in our simulations. We argue that the first
regime, where cracks propagate for finite distances, ap-
pears analogous to a first-order transition and that the
parameters of the model must be tuned in order to bring
the system to a critical state. A growth in the correlation
length as V, was increased in a model with a different
friction law had previously been observed [8].

Following Carlson and Langer [5], we introduce di-
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mensionless variables the blocks in the chain, which falls far off the scaling be-
k m 172 havior. These three regions correspond to what was
U; =F—pXj , T= T t, (2) designated in Ref. [5] as “microscopic,” ‘“localized,” and
0 P “delocalized” events, respectively. The upper end of the

so that Eq. (1) can be written in dimensionless form
sgn(U;)
(3)

where v;=V'k, /ky, v=V/Vy, and v =V, /V,. [We
depart slightly from the notation of Ref. [5] to emphasize
explicitly the different velocity scales. In their notation
vf=(204)_1 and v;=I].] Dots now represent derivatives
with respect ot the scaled time 7. The four relevant ve-
locities V, Vs, Vi, and ¥V, have been transformed respec-
tively into v, v,, v;, and vo=1. These dimensionless pa-
rameters completely determine the behavior of the mod-
el. In dimensionless units, the moment of an event is
mo=alk,/Fy)3;8U;, where again the sum is over the
blocks displaced during the event. The magnitude of an
event is defined as pu=log;qu,-

For the case studied by Carlson and Langer we are in
the parameter regime where v<<v,<vy(=1)<<v,. In
Fig. 1 we show the results for a simulation of a chain
with N =200 blocks, v=0.001, vf=%, and v;=10. The
distribution p(n) of events associated with n moving
masses is shown in Fig. 1(a). We note three distinct re-
gions in this plot. First we have a region of many small
events (n <n,=12) followed by a power-law regime of
intermediate-size events (12 <#n <70). Finally there is a
peak at N =200, corresponding to events that involve all

U, =vi(U; 1, —2U;+ U, )= U; +vr—

scaling regime is in good agreement with their predicted
correlation length £/a =4v,v,In(4v,/v)=71 for that
crossover. That the largest events in this simulation in-
volve all the blocks in the system is a finite-size effect: if
we were to increase NV or decrease v; we find, as did Carl-
son et al. [8], that these large ruptures do not reach the
system boundaries.

The distinction between the first two regions can be
seen more clearly in Fig. 1(b), where we plot the max-
imum velocities attained by a mass in an event, U_,,,
versus n, the number of blocks moving in the event. Here
we see a distinct change in slope and width at n,~12.
The vast majority (>99.9%) of the events lie in the re-
gion with n <n,. Though numerous, these events con-
tribute very little (less than 1%) to the forward motion of
the chain. More than 99% of the motion is due to the
few big ruptures with U ,,, > v,.

We can also look at the geometry of the individual
events. In Fig. 1(c) we show a projection of a three-
dimensional plot of the block velocities U ;(2) onto the j-t
plane. In this graph the horizontal solid lines indicate
the time intervals during which the corresponding block
was in motion. In this representation, an event is a clus-
ter of nearest-neighbor occupied sites (j,7) where by occu-
pied we mean that the jth block was moving at time z. In
that figure we can see clearly the two types of behavior:
(i) the small motion, with a number of moving blocks less
than n.; and (ii) the ruptures [9] that appear V shaped in
the plot. These latter events (which include both local-



47 DYNAMICS OF SPRING-BLOCK MODELS: TUNING TO...

ized and delocalized pulses) travel at the speed of sound.
The events with n <n, move more slowly than those in-
volving a larger number of blocks and, as seen in Fig.
1(b), have a different slope dU_,, /dn. Furthermore, they
also have a qualitatively different appearance: the small
events tend to move in a somewhat coherent fashion [no-
tice the almost periodic repetition of the small events in
Fig. 1(c)]. Events with n <n_ are not just smaller events
of the same kind as seen in the ruptures; we suggest that
they correspond to creep motion of the fault and serve to
nucleate the larger ruptures when n reaches n,.

In Fig. 1(d) we plot the distribution of magnitudes,
p(u) versus u. We find, in agreement with Carlson and
Langer, that the behavior for small u is consistent with a
power law, p(u) = u~® with b~1, and that the very large
ruptures have a much greater occurrence than is predict-
ed by an extrapolation of this behavior. The low-
magnitude behavior is dominated by the abundant events
with n <n,. Because of the relative scarcity of events in
the intermediate region with 12 <n <70, it is difficult for
us to establish whether those ruptures fall on the same
scaling curve as the smaller events. Our best estimate in-
dicates that these events have a smaller slope [10] (b=3)
and thus form a separate scaling region.

The behavior of the model in this regime is reminiscent
of what occurs at a first-order phase transition. As in
such a transition there is hysteresis as the fault stores en-
ergy until a large characteristic event is nucleated when
n~E&/a. The fact that even the largest ruptures in our
model are of finite size does not invalidate this analogy
any more than does the finite size of dendrites preclude
crystallization from being a first-order transition [11].

We will now describe what happens in the model as v,
is increased until vy =~v,=1. In this limit we will see that
there is a transition to another, qualitatively different
type of behavior. In the limit where v,= o (i.e., the fric-
tion is constant and independent of the velocity), the
motion for a single block (N =1) can be solved analytical-
ly: U=wv[1—cosr]. Likewise, in a chain of N blocks we
find in our simulations that no block ever stops moving
[12]. We find that the blocks move in a coherent fashion
with an approximate period of 2, as predicted by the
preceding equation. This type of behavior is very
different from what we have shown for v, <1 (where the
motion occurs in abrupt pulses) and there must be some
sort of transition between these two regimes. In Fig. 2 we
show a series of pictures of the motion of a system as v,
is varied and all the other parameters are held fixed
(N =200, v=10"3, and v;=2). As mentioned above, for
vy = oo all the blocks are continuously moving. As v, is
decreased, small regions of stationary blocks start to ap-
pear. When v, becomes less than 1.0 these stationary
(event-free) regions begin to percolate across the entire
system. The movement of the fault in this small v, re-
gion now occurs in the large, abrupt events.

We have investigated the nature of this transition by
calculating the fraction of time II that any given block
participates in a global-sized event as a function of vfl.
This is shown in Fig. 3. For low vfl this fraction ap-
proaches 1 and decays smoothly towards zero as val is
increased. If we think of Il as an “order parameter,” this
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transition appears to be a continuous one. The transition
occurs near vf=1.0, that is, the point where VfZVO.
For large values of v;l, the relaxation-oscillation behav-
ior of the system is analogous to a first-order transition:
there is large hysteresis as the blocks undergo a loading
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FIG. 2. A projection of the block velocities U;(¢) onto the j-t
plane for a 200-block system with v=10"% and v,=2. (a)
v,=35, (b) vf=§, and (c) v, =1. Note that as v, decreases the
blank areas, indicating stationary blocks, become more extend-
ed and begin to percolate through the entire system.
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FIG. 3. The fraction of time II that any given block partici-
pates in a global-sized event as a function of vf'. The results
are for simulations of 200 blocks with v,=2 and v=10"3.

cycle and the large events produce almost all the motion
of the “fault.” As v, is increased towards 1.0, the
loading-unloading hysteresis becomes less dramatic. If
we push the analogy with static phase transitions further,
this behavior is like a line of first-order transitions ending
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at a critical point. As in ordinary statistical mechanics,
first-order transitions are more common than second-
order ones.

It remains an open question whether the behavior of
the Burridge-Knopoff model detailed above is a good
description of real earthquake phenomena. Avalanches
in granular systems [13] have behavior similar to what we
have found here in the regime v, <v,=1. What appears
to be different is the additional scaling region found in
this model, which can occur all the way up to the begin-
ning of the delocalized regime. However, this model
clearly displays rich dynamics and the variety of behav-
iors that can be found by varying the four relevant veloci-
ty scales deserves further investigation in its own right.
We conclude by pointing out that a continuous transition
is observed when two of these velocity scales cross. It is
tempting to think of this equality of two scales as analo-
gous to a symmetry leading to a critical point in statisti-
cal mechanics.
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